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With many superior features, Runge–Kutta discontinuous Galerkin method (RKDG), which
adopts Discontinuous Galerkin method (DG) for space discretization and Runge–Kutta
method (RK) for time integration, has been an attractive alternative to the finite difference
based high-order Computational Aeroacoustics (CAA) approaches. However, when it comes
to complex physical problems, especially the ones involving irregular geometries, the time
step size of an explicit RK scheme is limited by the smallest grid size in the computational
domain, demanding a high computational cost for obtaining time accurate numerical solu-
tions in CAA. For computational efficiency, high-order RK method with nonuniform time
step sizes on nonuniform meshes is developed in this paper. In order to ensure correct
communication of solutions on the interfaces of grids with different time step sizes, the
values at intermediate-stages of the Runge–Kutta time integration on the elements neigh-
boring such interfaces are coupled with minimal dissipation and dispersion errors. Based
upon the general form of an explicit p-stage RK scheme, a linear coupling procedure is pro-
posed, with details on the coefficient matrices and execution steps at common time-levels
and intermediate time-levels. Applications of the coupling procedures to Runge–Kutta
schemes frequently used in simulation of fluid flow and acoustics are given, including
the third-order TVD scheme, and low-storage low dissipation and low dispersion (LDDRK)
schemes. In addition, an analysis on the stability of coupling procedures on a nonuniform
grid is carried out. For validation, numerical experiments on one-dimensional and two-
dimensional problems are presented to illustrate the stability and accuracy of proposed
nonuniform time-step RKDG scheme, as well as the computational benefits it brings. Appli-
cation to a one-dimensional nonlinear problem is also investigated.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

With many superior features, Runge–Kutta discontinuous Galerkin (RKDG) method, which adopts discontinuous Galerkin
approximation in space and explicit Runge–Kutta integration in time, has been widely applied in modeling advection-dom-
inant physical phenomena [34,6,7,20,21,1,33]. For aeroacoustic calculations, in order to simulate the acoustic waves propa-
gating from near field to far field, a long time integration with low dissipation and low dispersion errors is usually
required in a large space domain. In this regard, a variety of high-order Runge–Kutta methods have been applied, for instance,
the classical third and fourth order methods [25], the third-order TVD methods [18], and the optimized schemes with min-
imized dispersion and dissipation errors [22,4,2]. Typically they are designed for a uniform time step size in the entire
computational domain [3]. However, when it comes to realistic complex problems, especially the ones involving irregular
. All rights reserved.

ax: +86 10 82316108.

http://dx.doi.org/10.1016/j.jcp.2010.05.028
mailto:lixd@buaa.edu.cn
http://dx.doi.org/10.1016/j.jcp.2010.05.028
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


L. Liu et al. / Journal of Computational Physics 229 (2010) 6874–6897 6875
geometries and the ones involving a large disparity of physical scales, nonuniform grids are usually adopted for modeling res-
olution requirement and simulation effectiveness. For such cases, the time step size would be limited by the smallest grid size
due to stability requirements for explicit Runge–Kutta schemes. Consequently, with a uniform time step for the entire com-
putational domain, excessive computational time would be required for obtaining time-dependant numerical solutions,
which results in a barrier for many practical applications. Clearly, due to the popularity of Runge–Kutta schemes, there is a
need for the extension of Runge–Kutta methods to nonuniform time steps.

Over the past few decades, many efforts have been made to achieve time marching with variable time step sizes. Multirate
time integration schemes for both multi-step (Adam–Bashforth) methods and multi-stage (Runge–Kutta) methods for ordin-
ary differential equations have been actively developed [16,19,35]. The interpolation and the extrapolation on time are the
most direct approaches to realize multirate time stepping strategy [35,30], which are suitable for arbitrary ratio of time step
size. An early work on local time stepping for discontinuous Galerkin schemes is given in [12]. A recent application of the mul-
ti-step method with local time stepping to the discontinuous Galerkin method can be found in [17]. In [38,13], Adam–Bash-
forth type multi-step time integration schemes with nonuniform time step sizes are optimized in Cartesian and curvilinear
grid in conjunction with multiple grid size dispersion relation preserving (DRP) finite difference schemes. Local time stepping
methods based on the Cauchy–Kovalevskaja (CK) procedures, which are sometimes called the Lax–Wendroff procedures, have
also been developed rapidly, with arbitrary ratio of time-step sizes and be of arbitrary high order accuracy in the framework of
the ADER schemes (arbitrary high order schemes using derivatives) [11], such as the ADER finite volume (ADER-FV) [10,39],
and the ADER discontinuous Galerkin (ADER-DG) [32,8,9] and the ADER finite difference (ADER-FD) schemes, and the space–
time expansion DG scheme (STE-DG) [14,15]. We also mention a recent effort in [28] on using the additive Runge–Kutta
schemes for overcoming the time step restrictions imposed by a few small-sized elements.

In the present work, explicit Runge–Kutta method with nonuniform time step (NUTS RK) on nonuniform meshes is con-
sidered, where the spatial discretization is carried out by the discontinuous Galerkin (DG) method. For correct communica-
tion of solutions between meshes with different time step sizes, the coupling of values at intermediate stages of Runge–Kutta
time integration should be implemented synchronously for the elements neighboring the interfaces with low dissipation and
low dispersion errors. Formulation of the coupling procedures for multi-stage Runge–Kutta integration will be presented
based on the linearity of the equation. It makes the time marching with local time step available for the Runge–Kutta family
of time integration schemes, and is valid for an arbitrary time step ratio. Without any interpolation or extrapolation algo-
rithm, the coupling procedures maintain the same high order accuracy as that of the RK scheme for linear problems and sec-
ond order accurate for nonlinear problems. Numerical validations in one- and two-dimensional cases are performed to
demonstrate the stability, accuracy of the scheme for both linear and nonlinear cases, as well as the computational benefits
in those cases.

The remainder of the paper is organized as follows: discontinuous Galerkin spatial discretization is reviewed in Section 2.
In Section 3, the linear coupling procedure that is capable of handling nonuniform time-step integration on a nonuniform
grid is formulated based upon the general form of an explicit p-stage Runge–Kutta scheme, and an optimization of coupling
coefficients with low dissipation and low dispersion errors is discussed. A stability analysis for the nonuniform time-step
RKDG scheme is given in Section 4. Finally, the numerical experiments are conducted to validate the method in one- and
two-dimensional problems in Section 5. Section 6 gives the conclusions.

2. The discontinuous Galerkin spatial discretization

For convenience of discussion, we first briefly review a DG semi-discretization for partial differential equations (PDE).
Consider a system of hyperbolic PDE of the form given below in a domain X � Rd:
@U
@t
þr � F ¼ S; ð1Þ
where the solution U : X� ½0; T�#Rn ðn P dÞ is an n-vector valued function, and the flux F is given by F = F(U,x, t) while the
source term by S = S(U,x, t). Here, d is the number of space dimensions. For linear problems, the flux F can be written as
F = AU, and A is a vector with Jacobian matrices as entries, A = (A1, . . . ,Ad) and r ¼ @

@x1
; . . . ; @

@xd

� �
.

In the DG method, the computational domain of interest X is divided into non-overlapping elements,
X ¼
[Ne

k¼1

Xk
and the approximation space Vh is continuous within each element, but could be discontinuous across element interfaces.
The space Vh is obtained by defining on each element Xk the local polynomial space PðXkÞ which contains only spatial func-
tions in the semi-discrete formulation
V h ¼ fv 2 L1ðXÞ : v jXk 2 PðXkÞg: ð2Þ
Let the local basis set in Xk be Bk ¼ fvk
‘g‘¼1;...;N , which is usually chosen to be the same for all elements; and N is the degree

of freedom in Xk that is dependent on the number of space dimensions d and the order of scheme P. Then the local approx-
imate solution Uh in Xk can be expressed in an expansion of the local basis set Bk as
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UhjXk
ðx; tÞ ¼

XN

‘¼1

Ck
‘ ðtÞvk

‘ ðxÞ; ð3Þ
where Ck
‘ are the expansion coefficients of the solution in Bk. It has been shown that the accuracy of the method can reach

P + 1/2 on the general triangular grid, and even P + 1 on some Cartesian grid and some semi-uniform triangular grid when the
order of polynomial space is P [29,26,27,31].

By an integration by parts, the weak formulation of DG spatial discretization in Xk can be obtained as
Z
Xk

v ‘0
@Uk

h

@t
dxþ

Z
@Xk

v ‘0F
R � nds�

Z
Xk

F
@v ‘0

@x
dx ¼

Z
Xk

v‘0Sdx; ð4Þ
where @Xk is the boundary of Xk, and v ‘0 are test functions which are assumed to be the same as the basis polynomials in the
Galerkin method. FR is the numerical flux at element boundary. Since the discontinuities are permitted at the interfaces of
elements in the DG method, some numerical flux approximation should be adopted. Various numerical formulas for flux
approximation have been proposed in the literature (see, e.g. [23,33], and the references cited therein). Most of the approx-
imations can be generalized as
FR ¼ HðUL;UR;nÞ; ð5Þ
where UL and UR are the approximation values of U on the left and the right side of the element edge, which is directed by the
orientation of the normal vector of the edge pointing outside of the dominant element, n, according to the right-hand rule.
For linear problems, the numerical flux can be expressed as
FR ¼ ALUL þ ARUR: ð6Þ
Let A ¼
Pd

i¼1Aini. Then for the characteristics-based flux
AL ¼
Aþ hjAj

2
; AR ¼

A� hjAj
2

and for the Lax–Friedrich flux
AL ¼
Aþ hkmaxI

2
; AR ¼

A� hkmaxI
2

;

where kmax is the absolute maximum of the eigenvalues of A, and h is an upwind-parameter that is usually chosen to be a
positive real number between 0 and 1.

Introducing a proper local coordinate given by n = {ni}i=1,. . .,d, the volume integration in Eq. (4) can be evaluated conve-
niently in the reference element bXk using the Jacobian Jk, while the surface integral term is still computed in physical do-
main. Then the weak integral equation for time integration can be obtained as
Q
@Ck

@t
þ 1

Jk

Z
@Xk

v ‘0F
R ds�

Z
bXk

rv‘0 J
�1
k Fdn ¼

Z
bXk

v ‘0Sdn ð7Þ
where Q is mass matrix, and
Jk �
@ðx1; . . . ; xdÞ
@ðn1; . . . ; ndÞ

; Jk ¼ jJkj:
In what follows, we will discuss an extension of Runge–Kutta method to the solution of semi-discrete equation with non-
uniform time-step sizes. However, the developed method is not only valid for discontinuous Galerkin method but also, with
proper modifications, applicable to other spatial discretization methods, such as the finite difference schemes.
3. Nonuniform time-step Runge–Kutta method

High-order explicit Runge–Kutta schemes are frequently used for time integration in aeroacoustic computations, for
example, the classical Runge–Kutta schemes [5], the third-order TVD Runge–Kutta scheme [18], and the optimized low dis-
sipation and low dispersion Runge–Kutta (LDDRK) schemes [22,36]. Most of these schemes are developed with a uniform
time step size. For computational efficiency, linear coupling procedures for high-order Runge–Kutta time integration scheme
with nonuniform time-step size will be developed in this section.

3.1. Linear formulation

After a spatial discretization, such as the DG scheme discussed in the previous section, the semi-discrete equations for
time integration can be modeled as
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@U
@t
¼ FðUÞ; ð8Þ
where U represents the unknown vector. The general explicit p-stage Runge–Kutta time integration scheme with step Dt can
be written as
k1 ¼ FðUnÞ;
k2 ¼ FðUn þ Dta21k1Þ;
� � � � � �
kp ¼ FðUn þ Dt½ap1k1 þ ap2k2 þ � � � þ app�1kp�1�Þ;

Unþ1 ¼ Un þ Dt
Xp

i¼1

biki;

ð9Þ
where Un and Un+1 indicate the numerical solutions at time level tn and tn+1 = tn + Dt, respectively. Here, ki is the ith stage
value within one Runge–Kutta step. For convenience of discussion, U will be considered as a scalar function in the formula-
tion hereafter. The extension to the vector case is straightforward.

We first consider a case of nonuniform grid as illustrated in Fig. 1, which serves as a schematic of the interface between
coarse and fine meshes. The coarse mesh time-step Dtc is twice of the fine mesh time-step Dtf, i.e.
Dtc ¼ 2Dtf : ð10Þ
Although a ratio of 1/2 could be a common choice at grid interfaces, efficiency considerations on grid partitioning may
lead to a larger or smaller ratio. As we will see, the basic formulation presented below can be extended to case with an arbi-
trary ratio of time-step sizes.

Under assumption (10), the coarse mesh solution will advance one step while the fine mesh solution would advance two
steps. As shown in Fig. 1, we will refer to the level tn+1 = tn + Dtc = tn + 2Dtf as the common time level, where the solutions on
both fine and coarse meshes would step forward synchronously; and time level tn+1/2 = tn + Dtf as the intermediate time level,
where only the solution on fine mesh would be integrated. The interval [tn, tn+1] forms a time slab in the multirate time inte-
gration. The time stepping within a time slab is assumed to be constant. Specifically, within a typical time slab [tn, tn+1], the
solution on the coarse mesh is advanced forward one step to tn+1 = tn + Dtc by the integration formulas
kc;1 ¼ F Un
c

� �
;

kc;2 ¼ F Un
c þ Dtca21kc;1

� �
;

� � � � � �
kc;p ¼ F Un

c þ Dtc½ap1kc;1 þ ap2kc;2 þ � � � þ app�1kc;p�1�
� �

;

Unþ1
c ¼ Un

c þ Dtc

Xp

i¼1

bikc;i;

ð11Þ
Synchronously, for the solution on the fine mesh, the first time-step in the Runge–Kutta integration with step Dtf from tn

to tn+1/2 = tn + Dtf is
kð1Þf ;1 ¼ F Un
f

� �
kð1Þf ;2 ¼ F Un

f þ Dtf a21kð1Þf ;1

� �
� � � � � �

kð1Þf ;p ¼ F Un
f þ Dtf ap1kð1Þf ;1 þ ap2kð1Þf ;2 þ � � � þ app�1kð1Þf ;p�1

h i� �
;

Unþ1
2

f ¼ Un
f þ Dtf

Xp

i¼1

bik
ð1Þ
f ;i :

ð12Þ
Fig. 1. Sketch of a nonuniform mesh with nonuniform time-step.
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At intermediate time level, the second step in fine mesh tn+1/2 to tn+1 = tn + 2Dtf is carried out as
kð2Þf ;1 ¼ F Unþ1
2

f

� �
;

kð2Þf ;2 ¼ F Unþ1
2

f þ Dtf a21kð2Þf ;1

� �
;

. . . . . .

kð2Þf ;p ¼ F Unþ1
2

f þ Dtf ½ap1kð2Þf ;1 þ ap2kð2Þf ;2 þ � � � þ app�1kð2Þf ;p�1�
� �

;

Unþ1
f ¼ Unþ1

2
f þ Dtf

Xp

i¼1

bik
ð2Þ
f ;i :

ð13Þ
In the above, subscripts ‘c’ and ‘f’ have been used to denote the solutions in the coarse and fine meshes, respectively.
Since the numerical flux approximation is applied at the interface of neighboring elements, the spatial operator F(U) ap-

peared on the right-hand side of Eqs. (11)–(13) is dependent on values in adjacent elements. Consequently, for elements next
to an interface of fine and coarse meshes, the stage values on the coarse mesh are needed for spatial discretization operator
on the fine mesh, and vice versa. A suitable coupling procedure should be employed to ensure correct communication of the
neighboring elements with different time step sizes.

The relations that are necessary to implement a nonuniform time-step Runge–Kutta scheme described above can be sum-
marized as follows, in which we will use an over tilde to denote the coupling values computed in a coarse/fine element that
are to be used in the time integration of a neighboring fine/coarse element:

1. For the synchronous stepping in the coarse and the fine mesh at the start of a time slab:
(1.a) Vector f~kf ;igi¼1;2;...;p should be computed from known fkð1Þf ;i gi¼1;2;...;p in fine mesh for use in time advancing in coarse

mesh in (11).

(1.b) Vector f~kð1Þc;i gi¼1;2;...;p should be computed from known {kc,i}i=1,2,. . .,p in coarse mesh for use in time advancing in fine
mesh in (12).

2. For time stepping in the fine mesh at intermediate time-level:

(2.a) Vector f~kð2Þc;i gi¼1;2;...;p should be computed from known {kc,i}i=1,2,. . .,p in coarse mesh for use in time advancing in fine
mesh at the intermediate time level in (13).

For linear problems, relations (1.a), (1.b) and (2.a) can be established by the fact that stage values {ki} in the Runge–Kutta
scheme are directly related to the time derivatives of U. An analysis of Runge–Kutta scheme (9) shows that
k1

k2

�

�

�

kp

2666666666666666664

3777777777777777775

¼

1 0 0 � � 0

1 c22 0 � � 0

1 c32 c33 � � 0

� � � � � �

� � � � � �

1 cp2 cp3 � � cpp

2666666666666666664

3777777777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

1 0 0 � � 0

0 Dt 0 � � 0

0 0 Dt2 � � �

� � � � � �

� � � � � �

0 0 0 � � Dtp�1

2666666666666666664

3777777777777777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PDt

@U
@t

@2U
@t2

�

�

�

@pU
@tp

26666666666666666664

37777777777777777775
t¼tn

; ð14Þ
where cij are related to the Runge–Kutta coefficients aij by
c22 ¼ a21;

c32 ¼ a31 þ a32; c33 ¼ a32a21;

c42 ¼ a41 þ a42 þ a43; c43 ¼ a43a32 þ a43a31 þ a42a21;

c44 ¼ a43a32a21;

� � � � � �
cp;2 ¼ ap;1 þ � � � þ ap;p�1; cp;3 ¼ ap;p�1ap�1;p�2 þ � � � þ ap;2a21;

� � �
cp;p ¼ ap;p�1ap�1;p�2 � � � a21 ðap;p�1ap�1;p�2 � � � a21 – 0Þ:

ð15Þ
Under the assumption ap,p�1ap�1,p�2� � �a21 – 0, which is true for the majority of Runge–Kutta family, by (14) it is straight-
forward to get the relation between f~kf ;ig and fkð1Þf ;i g in the fine elements neighboring the interface as
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~kf ;1

~kf ;2

�
�
�

~kf ;p

26666666664

37777777775
¼ CPDtc P�1

Dtf
C�1

kð1Þf ;1

kð1Þf ;2

�
�
�

kð1Þf ;p

266666666664

377777777775
� Tf

kð1Þf ;1

kð1Þf ;2

�
�
�

kð1Þf ;p

266666666664

377777777775
ð16Þ
and similarly, the relation between f~kð2Þc;i g and {kc,i} in the coarse elements neighboring the interface is
~kð1Þc;1

~kð1Þc;2

�
�
�

~kð1Þc;p

26666666664

37777777775
¼ CPDtf

P�1
Dtc

C�1

kc;1

kc;2

�
�
�

kc;p

2666666664

3777777775
� Tð1Þc

kc;1

kc;2

�
�
�

kc;p

2666666664

3777777775
: ð17Þ
Obviously, the coupling matrix Tð1Þc is the inverse of Tf. These are the relations for (1.a) and (1.b) for linear problems. It is
important to note that they are both lower-triangular matrices. Consequently, the coupling procedures can be carried out
synchronously in both coarse and fine meshes on every stage at the start of a time slab.

Further, relations for (2.a) can be established by utilizing a Taylor series expansion of (9) at the intermediate time level.
For linear cases, the Taylor series expansion of {kc,i} at tn+1/2 = tn + Dtf up to order p will be used. Specifically, we have
k1

k2

�
�
�

kp

2666666664

3777777775
t¼tnþDtf

� CPDtf
BDtf

@U
@t

@2U
@t2

�
�
�

@pU
@tp

26666666664

37777777775
t¼tn

; ð18Þ
where BDtf
is an upper-triangular matrix of the form
BDtf
¼

1 b12Dtf b13Dt2
f � � b1pDtp�1

f

0 1 b23Dtf � � b2pDtp�2
f

0 0 1 � � b3pDtp�3
f

� � � � � �
� � � � � �
0 0 0 � � 1

266666666664

377777777775
ð19Þ
When no optimization is applied, bij are just the coefficients of Taylor series expansion given below:
bij ¼
1

ðj� iÞ!
Using (14) and (18), f~kð2Þc;i g that is needed in the second step of the fine mesh can be calculated from the known {kc,i} by
the following equation:
~kð2Þc;1

~kð2Þc;2

�
�
�

~kð2Þc;p

26666666664

37777777775
¼ CPDtf

BDtf
P�1

Dtc
C�1

kc;1

kc;2

�
�
�

kc;p

2666666664

3777777775
� Tð2Þc

kc;1

kc;2

�
�
�

kc;p

2666666664

3777777775
ð20Þ
which establishes the relation (2.a).
With the formulas for the coupling matrices Tf, and TðsÞc ; s ¼ 1;2, given above, the coupling procedures can be carried out

as described in (11)–(13).
The formulation introduced above is derived for a general explicit p-stage Runge–Kutta scheme. It can be applied readily

to specific Runge–Kutta schemes. The difference in the extensions for different RK schemes lies only on coefficient matrix C
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in formula (14). In this sense, the formulation presented here is general for linear problems. More details on the extension to
the schemes frequently used in CAA are given in Appendix.

What need to be pointed out is that for linear problems, the algorithm is of the same order of accuracy as that of the Run-
ge–Kutta scheme for time integration. However, for nonlinear problems, because the truncation error in formula (14) is re-
duced to be OðDt2Þ, the accuracy of the algorithm is of second order.
3.2. Application to arbitrary ratio of time-step size

In practice, considerations of grid partitioning and computational efficiency may result in a ratio of time-step sizes other
than 1/2. The formulation presented above can be extended to a more general time-step ratio.

We first generalize the coupling formulas described in the previous subsection for a mesh interface between time step Dt1

and Dt2 of arbitrary ratio, as shown in Fig. 2. To advance a time step Dt1 in mesh 1 from tn to tn + Dt1, the Runge–Kutta stage
values on mesh 2 at time tn is needed. Following the analysis in 3.1, the necessary Runge–Kutta stage values in mesh 2 to be
used for mesh 1 can be readily obtained as
½eK2�t¼tn
¼ CPDt1 BDs2 P�1

Dt2
C�1½K2�t¼tm�1

; ð21Þ
where ½eK2� denotes the resultant column vector of the necessary stage values in mesh 2 for use in mesh 1 at time level tn,
computed from the known stage values at the nearest earlier time level tm�1 in the neighboring mesh of Dt2. Matrix BDs2 has
the same definition as (19) and here
Ds2 ¼ tn � tm�1: ð22Þ
Similarly, to advance a time step Dt2 in mesh 2 from tm to tm + Dt2, the necessary RK stage values in mesh 1 to be used in
mesh 2 is
½eK1�t¼tm
¼ CPDt2 BDs1 P�1

Dt1
C�1½K1�t¼tn

; ð23Þ
where
Ds1 ¼ tm � tn: ð24Þ
At the start of a time slab where Ds = 0, matrix BDs becomes the identity matrix, and (21) and (23) will be consistent with
(16) and (17) in 3.1. Thus, the formulas (21) and (23) are a generalization of the coupling procedures both at the start of time
slabs and the time stepping within time slabs.

Using (21) and (23), the time integrations for grid points with different time steps of an arbitrary ratio can be carried out
synchronously. As an example, the coupling procedures for time step ratio 2/3 will be described in detail. The grid structure
and time levels for a time slab [tn, tn+1] are illustrated in Fig. 3 where
m−1

t=t

Δt 2

Δt 1

Δτ 2

Δτ 1

t=t m

Mesh 1 Mesh 2

t=t
n

Fig. 2. Schematics of an interface between meshes of Dt1 and Dt2.



Fig. 3. A nonuniform mesh with nonuniform time-step Dtc:Dtf = 3:2.
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Dtc ¼
3
2

Dtf : ð25Þ
Let ½KðsÞc �; s ¼ 1;2 and ½KðsÞf �; s ¼ 1;2;3 be stage value vectors at the sth time level within the time slab for the coarse and the
fine mesh respectively, and ½eKðsÞf �; s ¼ 1;2 and ½eKðsÞc �; s ¼ 1;2;3 be the vectors for coupling procedures. The necessary rela-
tions for implementation of a nonuniform time-step Runge–Kutta scheme shown in Fig. 3 can be summarized as follows:

1. For the synchronous step in the coarse mesh and the first step in the fine mesh:
(1.a) Vector ½eKð1Þf � should be computed from known ½Kð1Þf � in fine mesh for the time advancing in coarse mesh;

(1.b) Vector ½eKð1Þc � should be computed from known ½Kð1Þc � in coarse mesh for the time advancing in fine mesh.
2. For the second step in the fine mesh:

(2.a) Vector ½eKð2Þc � should be computed from known ½Kð1Þc � in coarse mesh for the time advancing in fine mesh.
3. For the second step in the coarse mesh:

(3.a) Vector ½eKð2Þf � should be computed from known ½Kð2Þf � in fine mesh for the time advancing in coarse mesh.
4. For the third step in the fine mesh:

(4.a) Vector ½eKð3Þc � should be computed from known ½Kð2Þc � in coarse mesh for the time advancing in fine mesh.

These relations can be realized by formulas given in (21) and (23). Specifically, we have

For (1.a):
½eKð1Þf � ¼ CPDtc P�1
Dtf

C�1½Kð1Þf � � Tð1Þf ½K
ð1Þ
f �: ð26Þ

For (1.b):

½eKð1Þc � ¼ CPDtf
P�1

Dtc
C�1½Kð1Þc � � Tð1Þc ½K

ð1Þ
c �: ð27Þ

For (2.a):

½eKð2Þc � ¼ CPDtf
BDtf

P�1
Dtc

C�1½Kð1Þc � � Tð2Þc ½K
ð1Þ
c �: ð28Þ

For (3.a):

½eKð2Þf � ¼ CPDtc B1
2Dtf

P�1
Dtf

C�1½Kð2Þf � � Tð2Þf ½K
ð2Þ
f �: ð29Þ

For (4.a):

½eKð3Þc � ¼ CPDtf
B1

2Dtf
P�1

Dtc
C�1½Kð2Þc � � Tð3Þc ½K

ð2Þ
c �: ð30Þ

In practice, the coupling matrices can be stored and do not need to be computed at each time step. Moreover, the coupling
is only carried out for elements next to the interfaces of nonuniform time steps, so the additional storage and computational
time incurred due to coupling are limited.

3.3. Optimization with minimal dissipation and dispersion errors

Runge–Kutta schemes with low dissipation and low dispersion errors are preferred in CAA. In order to minimize the dis-
sipation and dispersion errors in the coupling procedures presented previously, we study a possible optimization of the coef-
ficient matrices at intermediate levels. The coefficients in the first row in formula (19), {b1j}j=2,3,. . .,p will be modified so that
the numerical amplification factor at intermediate time level will be consistent with that of corresponding LDDRK scheme
[22], which is already optimized to have the minimal dissipation and dispersion errors.



Table 1
Optimized coefficients for LDDRK schemes at different time levels.

Stages Level b14 b15 b16

4 2 0.1629970000 – –
3 0.1657492500 – –
4 0.1662589258 – –

5 2 0.1665580000 0.03944976670 –
3 0.1666304445 0.04126266474 –
4 0.1666545926 0.04157650988 –

6 2 1/3! 0.04166666670 0.007810050010
3 1/3! 0.04166666669 0.008300628140
4 1/3! 0.04166666670 0.008326873060

Note. The 1st level is the start of the time slab; b12 = 1, b13 = 1/2.
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The case with integral time-step size ratio m:1 is considered here for convenience, for which the coupling procedures are
only carried out on the coarse mesh.

Consider the model equation @u/@t = �q@ u/@x. Upon Fourier expansion, the numerical amplification factor of Runge–Kut-
ta integration with time step Dtf can be expressed in the form of
ro ¼ 1þ
Xp

j¼1

cjð�irÞj; ð31Þ
where r = qk*Dtf, and k* is only dependent on spatial discretization; for LDDRK schemes cj are the coefficients given in [22].
After m steps advancing with uniform step size, the factor should be rm

o .
After applying coupling procedure, the amplification factor at an intermediate time level in coarse mesh becomes
~r ¼ 1þ
Xp

j¼1

cjð�irÞj; ð32Þ
where r has the same definition as before, and coefficients {cj}j=1,2,. . .,p are related to {b1j}j=2,3,. . .,p by formula (18) and (19).
Thus the amplification factors of nonuniform time-step advancing with ratio m:1 can be obtained within a time slab by
~rð1Þc ¼ ro;

~rðkÞc ¼ ~rðk�1Þ
c

~r

¼ 1þ
Xp

j¼1

cjð�irÞj
 !k�1

1þ
Xp

j¼1

cjð�irÞj
 !

; k ¼ 2;3; . . . ;m;

ð33Þ
where ~rðkÞc is the factor of the coupling procedure at the kth intermediate time level, of which the first one at the start of the
time slab is ro. By comparing the factor ~rðkÞc with that of LDDRK integration, rk

o, a linear system for b1j is yielded.
The optimized coefficients turn out to be practically the same for all intermediate time-levels (second level, third level,

. . .) within one coarse time step of different integral time-step ratios. Table 1 shows the optimized coefficients for m = 2, 3, 4.
Once the optimized coefficients {b1j}j=2,3,. . .,p have been determined, the matrices B and Tð2Þc are to be found by formulas (19)
and (20). The extension to the cases with arbitrary time-step size ratios is straightforward. In actual computation, however,
since the coupling procedure affects only a few elements next to the interfaces of nonuniform meshes, the benefit of this
optimization to the solution on the whole domain has been found to be moderate.

4. Stability analysis

In this section, we consider the stability of the coupling procedure proposed in previous sections. Specifically, we study
the stability of computation for a nonuniform mesh shown in Fig. 4 when the nonuniform Runge–Kutta scheme is applied to
the one-dimensional wave equation
@u
@t
þ q

@u
@x
¼ 0; x 2 X; t 6 T; ð34Þ
where u is the unknown, and q is the speed of the wave. We also assume periodic boundary condition in our stability
analysis.

In Fig. 4, the total number of elements is assumed to be 2Ne, with Ne elements, indexed from 1 to Ne, in the fine mesh
region and Ne elements, indexed from �Ne + 1 to 0, in the coarse mesh region. For interior elements, the semi-discrete DG
approximation can be written as



coarse  mesh

. . .

Δxc Δxf
eft boundary elementL Right boundary element

1− 0 1 2 3−2−Ne+1 −Ne+2 Ne−1 Ne. . .

Interface

fine mesh

. . .

Fig. 4. Schematic of a finite nonuniform mesh composed of two blocks.
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dCk

dt
¼ 1

Dxk
½M�Ck�1 þM0Ck þMþCkþ1� ð35Þ
for k = �Ne + 2,�Ne + 3, . . . ,Ne � 1, where Ck is a column vector that contains all expansion coefficients of solution in the ele-
ment with index k, and Dxk = Dxc and Dxf for the elements in coarse and fine meshes respectively. M0, M� and M+ are the
coefficient matrices for the dominant element and its left and right adjacent elements respectively. For the first and the last
element, due to periodic boundary condition, we have
dC�Neþ1

dt
¼ 1

Dxc
½M�CNe þM0C�Neþ1 þMþC�Neþ2� ð36Þ
and
dCNe

dt
¼ 1

Dxf
½M�CNe�1 þM0CNe þMþC�Neþ1�: ð37Þ
The above can be easily written in a block-matrix form as
dC
dt
¼ diagðDx�1

k INÞ �

M0 Mþ 0 0 � � M�

M� M0 Mþ 0 � � 0
0 M� M0 Mþ � � 0
� � � � � � �
� � � � � � �
0 � � 0 M� M0 Mþ

Mþ � � 0 0 M� M0

2666666666664

3777777777775
C � HC ð38Þ
where C is a column vector of length Ng = N � 2Ne containing all expansion coefficients on the whole grid, and N is the degree
of freedom in one element. Thus C is of the form
C ¼

C�Neþ1

C�Neþ2

�
�
�

CNe

26666666664

37777777775
; with Ck ¼

ck
1

ck
2

�
�
�

ck
N

2666666664

3777777775
; k ¼ �Ne þ 1; . . . ;Ne:
4.1. Analysis of RKDG with uniform time step

We first present a study of stability analysis with a uniform time step. For the semi-discrete equation (38), the Runge–
Kutta scheme can be expressed as
K1 ¼ HCn; ð39Þ
K2 ¼ HðCn þ Dta21K1Þ; ð40Þ
� � � � � � ð41Þ
Kp ¼ HðCn þ Dt½ap1K1 þ � � � þ app�1Kp�1�Þ; ð42Þ
Cnþ1 ¼ Cn þ Dt½b1K1 þ b2K2 þ � � � þ bpKp�: ð43Þ
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From the above, it is straightforward to get a matrix relation
−

−

−

−

Im
(λ

)

Fig. 5.
CFL = 0
Cnþ1 ¼ RCn: ð44Þ
Matrix R will be referred to as the amplification matrix. The scheme would be stable if all eigenvalues of R have a modulus
less or equal to unity, i.e.
maxðjkijÞ 6 1; ð45Þ
where jkij is the modulus of the eigenvalue of R.
Obviously, the amplification matrix R is dependent on the specific RK scheme, Courant–Friedrichs–Lewy condition (CFL)

and the spacings of the coarse and fine element. Here we first present results for a uniform grid with Dxc = Dxf = 1 (Case 1) as
well as a nonuniform grid with Dxc = 1, Dxf = 1/2 (Case 2) but with a single uniform time step. Fig. 5 show eigenvalue dis-
tribution of the fourth-order DG scheme coupled with LDDRK5, where the CFL number is at the stability limit. The eigenvalue
distributions of LDDRK4-DG and LDDRK6-DG are found in the similar form. The CFL number is defined by the coarse mesh as
CFL ¼ q
Dtc

Dxc
: ð46Þ
For LDDRK schemes and DG schemes up to P = 6, the stability limits on the CFL number determined by condition (45) have
been found computationally and given in Table 2 for case 1, for several LDDRK schemes and DG schemes. The stability limits
obtained by direct numerical simulation are also listed. Very good agreement is observed.
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Distribution of eigenvalues of the amplification matrix R for uniform time-step LDDRK5-DGðOð4ÞÞ: (a) Case 1 when CFL = 0.218 and (b) Case 2 when
.109.

Table 2
Stability limits for uniform LDDRK-DG with h = 0.5.

Stage of LDDRK Order of DG CFLmax

Analysis Numerical

4 1 2.29 2.29
2 0.646 0.646
3 0.329 0.329
4 0.202 0.202
5 0.138 0.137
6 0.100 0.100

5 1 2.73 2.72
2 0.708 0.709
3 0.356 0.358
4 0.218 0.219
5 0.148 0.149
6 0.107 0.107

6 1 3.10 3.11
2 0.825 0.825
3 0.410 0.411
4 0.252 0.253
5 0.172 0.172
6 0.124 0.125
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4.2. Analysis of RKDG with nonuniform time step

We now consider the stability for the proposed nonuniform time-step RK schemes. By applying the coupled Runge–Kutta
scheme (11)–(13) to the semi-discrete equation (38), together with coupling matrices developed in (16), (17) and (20), a ma-
trix relation of the form (44) can again be obtained,
−

−

−

−

Im
(λ

)

Fig. 6.
LDDRK5
Cnþ1 ¼ RðDtc;Dtf ÞCn; ð47Þ
where the amplification matrix R now depends on the time steps Dtc and Dtf of the coarse and fine meshes.
We consider the ratio Dtc:Dtf = Dxc:Dxf = 2:1 (Case 3), so that CFL number is uniform on the entire domain. Obviously, the

eigenvalues of R(Dtc,Dtf) for a nonuniform time step will differ from those for a uniform time step considered in 4.1. We have
tried to plot the eigenvalues of R for LDDRK-DGðOð1� 6ÞÞ at the corresponding maximal CFL number obtained in the same
way as in the previous section. For comparing with the results of Case 1 and Case 2, distributions of the eigenvalues of Case 3
that take non-uniformity of time-step size and element-spacing size into account. Fig. 6 shows the distributions of the eigen-
values for LDDRK5-DG as an example. Those maximal CFL numbers for nonuniform LDDRK-DG schemes are in a good agree-
ment with the stability limits obtained in direct numerical simulation, given as in Table 3. It is observed that the stability
limits in nonuniform time-step cases remain the same or are slightly larger than those of uniform LDDRK-DG schemes in
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Distribution of eigenvalues of the amplification matrix R for nonuniform time-step LDDRK5-DG: (a) LDDRK5-DGðOð3ÞÞ when CFL = 0.365 and (b)
-DGðOð4ÞÞ when CFL = 0.214.

Table 3
Stability limits for nonuniform LDDRK-DG with Dtc:Dtf = 2:1.

Stage of LDDRK Order of DG CFLmax

Analysis Numerical

4 1 2.31 2.31
2 0.659 0.659
3 0.334 0.334
4 0.204 0.204
5 0.138 0.135
6 0.100 0.100

5 1 2.76 2.76
2 0.719 0.719
3 0.365 0.364
4 0.214 0.214
5 0.139 0.139
6 0.0982 0.0982

6 1 3.08 3.08
2 0.832 0.832
3 0.417 0.417
4 0.255 0.254
5 0.173 0.173
6 0.125 0.125

Note. Upwind-parameter h = 0.5.
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Table 2, except when the order of DG scheme is higher than 3 and in combination with LDDRK5, where the stability limits of
nonuniform time-step for LDDRK5-DG schemes drop down slightly. As such, use of coupling procedures is not expected to
have a negative impact on the stability limit of RKDG schemes in general.
5. Numerical examples

In this section, we present numerical examples of applying the nonuniform time step Runge–Kutta scheme developed in
the previous sections. One-dimensional test examples are shown in Section 5.1 and two-dimensional examples are shown in
Section 5.2.
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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Fig. 7. Solution at (a) t = 40, (b) t = 60 and (c) t = 100 when Dt1:Dt2:Dt3 = 3:2:3.
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5.1. One-dimensional tests

5.1.1. Linear case
The first case is the one-dimensional scalar transport equation
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
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Fig. 8. Solution at (a) t = 40, (b) t = 60 and (c) t = 100, when Dt1:Dt2:Dt3 = 2:1:2; and (d) the 1st and 20th periods at t = 100.
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@u
@t
þ @u
@x
¼ 0 ð48Þ
with the initial condition u(x,0) = 0, on the interval x 2 [0,100]. At the boundary x = 0, a sine wave uð0; tÞ ¼ sin p
2 t
� �

is excited
which propagates into the domain. We consider a nonuniform grid consisting of three blocks, with intervals [0,40], [40,60],
and [60,100], of which the second one is fine mesh and the other two are coarse meshes. The one-dimensional version of
nonuniform time-step RKDG method is used to solve this problem. With a uniform CFL number, the time-step sizes of
the neighboring blocks are different. Thus the coupling procedure should be adopted in the elements adjacent to the inter-
faces of fine and coarse meshes.

Fourth-order low-storage LDDRK scheme and corresponding coupling procedures are applied here combined with the
same order DG method. The numerical solutions uh are given when Dxc:Dxf = 3:2 (Case 1A) in Fig. 7, and Dxc:Dxf = 2:1 (Case
1B) in Fig. 8 respectively where Dxc = 1 for both cases, and the grids are illustrated on the top of the graphs. In both examples,
the sine wave propagates through the interfaces without any noticeable error.

The accuracy of the solution is further analyzed in a grid refinement study. We compare the numerical solution of the
20th period with the 1st period at t = 100 in the L2-norm of the error which is defined as
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ k

0
juhðx; tÞ � uhðxþ 20k; tÞj2 dx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
2

Xn0�1

n¼0

Z 1

�1
jun

hðn; tÞ � unþ20n0
h ðn; tÞj2 dn

vuut : ð49Þ
The grid refinement results are shown in Table 4 for case 1B. The super-convergence rates are observed when the accu-
racy order of DG ranges from 2 to 6. Also shown are the results by a single uniform time step. The comparison between the
results by using nonuniform time step with those by using single time step implies that the accuracy of the solution is not
reduced by the present coupling procedures, and the nonuniform time-step Runge–Kutta integration preserves the super-
convergence property of DG method [20,1].

5.1.2. Burger’s equation
In this example, the coupling procedure is applied to a nonlinear test problem. Consider one-dimensional Burger’s equa-

tion written in the first-order system
@u
@t
þ @ðu

2=2Þ
@x

þ � @v
@x
¼ 0;

v þ @u
@x
¼ 0

ð50Þ
with a smooth initial condition
on nonuniform grids with Dxc:D xf = 2:1 at t = 100.

Dxc Dtc:Dtf = 2:1 Dtc:Dtf = 1:1

Error E Order Error E Order

1.0 0.1337986E+01 0.1337986E+01
0.5 0.8928877E+00 0.5835 0.8928877E+00 0.5835
0.25 0.1943643E+00 2.1997 0.1943643E+00 2.1997
0.125 0.2802999E�01 2.7937 0.2802999E�01 2.7937
0.0625 0.3615612E�02 2.9547 0.3615612E�02 2.9547

1.0 0.1555250E+00 0.1555260E+00
0.5 0.3406188E�02 5.5128 0.3406192E�02 5.5129
0.25 0.9236151E�04 5.2047 0.9236102E�04 5.2047
0.125 0.2770594E�05 5.0590 0.2770156E�05 5.0592
0.0625 0.8563485E�07 5.0159 0.8714656E�07 4.9904

1.0 0.2034853E�02 0.2034971E�02
0.5 0.2606452E�04 6.2867 0.2606921E�04 6.2865
0.25 0.2496610E�06 6.7060 0.2498732E�06 6.7050
0.125 0.2092026E�08 6.8989 0.2126499E�08 6.8766

2.0 0.1237796E�01 0.1238349E�01
1.0 0.1594024E�04 9.6009 0.1609385E�04 9.5877
0.5 0.1554066E�07 10.0024 0.1928697E�07 9.7047

4.0 0.2294258E+00 0.2290161E+00
2.0 0.6976945E�04 11.6831 0.7423456E�04 11.5911

tf are of the same value in two cases above.
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uðx;0Þ ¼ 1� tanh
x� x0

2�

� �
;

vðx;0Þ ¼ �1þ tanh2 x� x0

2�

� �� �.
2�;
where x 2 [0,50], and x0 = 4. � = 0.2 is the viscous coefficient.
A general two-block grid is also applied here, with intervals [0,25] and [25,50], of which the first block has a coarse spac-

ing Dxc = 1 and Dxc:Dxf = 2:1. The interface of two blocks locates at x = 25 that is denoted in Fig. 9. With the uniform CFL
number the time-step ratio is Dtc:Dtf = 2:1. Fourth-order low-storage LDDRK scheme combined with fourth-order DG dis-
cretization is used. The values of u and v are both required to be coupled properly at the interface of two meshes.
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Fig. 9. Solutions U and @U
@x of Burger’s equation at t = 0, 16, 26, and 36; the dashdotted line locates the interface of meshes.
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The numerical solutions and its first spatial derivative on nonuniform grid are compared with the exact solutions in Fig. 9,
which keeps the same shape as the initial condition as it propagates downstream. No oscillation is observed in the neigh-
borhood of the interface at x = 25. By comparing with solutions obtained by a single time step, the accuracy of the solution
is also found to be unaffected by the coupling procedures in the current case.

5.2. Two-dimensional test

5.2.1. Acoustic wave in free field
For two-dimensional verification, the coupling procedure is applied to simulate the propagation of a Gaussian pulse in a

free field at first, using the linearized Euler equations in the domain x 2 [�100,100], y 2 [0,200]

@U
@t
þ A

@U
@x
þ B

@U
@y
¼ 0; ð51Þ
where
U ¼

q0

u0

v 0

p0

26664
37775; A ¼

uo qo 0 0
0 uo 0 1=qo

0 0 uo 0
0 cpo 0 uo

26664
37775; B ¼

vo 0 qo 0
0 vo 0 0
0 0 vo 1=qo

0 0 cpo vo

26664
37775:
x
-100 0 1000

200

x

y 100

y 100

Fig. 10. 2D nonuniform grid: (a) whole and (b) local.
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The background flow parameters (qo,uo,vo,po)T are constant
po ¼ 1=c;
qo ¼ 1;
uo ¼ vo ¼ 0:

ð52Þ
Here, c = 1.4. And the perturbing quantities (q0, u0,v0,p0)T have the initial profile
q0 ¼ p0 ¼ exp �ðln 2Þ x2 þ ðy� 125Þ2

r2
o

" #( )
;

u0 ¼ v 0 ¼ 0; ro ¼ 10:
The linear coupling procedure is tested on the nonuniform triangular grid as shown in Fig. 10, which consists of two
blocks with different characteristic lengths of the elements that satisfy hc:hf = 2:1.

Contours of pressure at time t = 30, 45, 60, and 75 are given in Fig. 11. The pulse propagates smoothly from the coarse
mesh to the fine mesh. The comparisons of the numerical solutions with the exact one along the line x = 0 perpendicular
to the interface of two blocks are shown in Fig. 12 with excellent agreements. In consideration of more elements neighboring
the interface of the blocks in 2D problems, it is reasonable that the overhead due to the coupling procedures are slightly more
in 2D problems than that in 1D problems.

5.2.2. Acoustic wave scattering off single circular cylinder
After the validation of the developed coupling procedures on 2D nonuniform triangular grid for a Gaussian pulse in the

free field, we further consider the acoustic wave scattered by a circular cylinder of the radius r = 0.5, which was a benchmark
problem of the second CAA workshop [37]. The acoustic wave is initialized by the pressure pulse
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Fig. 11. Contours of pressure at t = 30, 45, 60 and 75 with Mx = 0, and My = 0.
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p ¼ exp � lnð2Þ ðx� 4Þ2 þ y2

0:22

" #
ð53Þ
and the linearized Euler equation (51) is solved. Fifth-order DG spatial discretization and fourth-order LDDRK6 are applied
here. The computational domain is x 2 [�10,10],y 2 [�10,10]. The whole domain is discretized by unstructured triangular
grid. In order to resolve the curved wall boundary of the cylinder, the finest grid is used in a small annular area
(0.5 6 r 6 1.0) around the cylinder, which is denoted as Block 1 in Fig. 13. The wall boundary is approximated by 40
straight-edged elements. A relatively larger area away from the cylinder (1.0 6 r 6 5.5) is Block 2. The grid in this block is
generated to ensure that the characteristic length of the elements is less than 0.167, so the equivalent points-per-wave
(PPW) with respect to fifth-order DG is great than 6. The rest of the domain is denoted as Block 3, in which the grid is coars-
ened as it is far away from the cylinder. For non-reflecting boundary of the computational domain, the Perfectly Matched
Layer boundary condition (PML) [24] is applied. The width of PML area indicated as Block 4 is D = 2, and quadrilateral ele-
ments are used in this area. The blocks 1–4 contain 452, 7206, 8208, and 704 elements, respectively. The local time steps
used in every block satisfy Dt1:Dt2:Dt3:Dt4 = 1:2:4:4, and Dt1 = 0.025. Fig. 14 shows the pressure contours at t = 8, and
the comparisons of the pressure at three points of which the polar coordinates are A (r = 5, h = p/2), B (r = 5, h = 3p/4) and
C (r = 5, h = p) as a function of time show a good agreement with the exact solution in Fig. 15.

5.3. Reduction in computational cost

In this section, we examine the reduction in computational cost due to the use of nonuniform time steps. We first give an
estimate on the time reduction factor without including the cost of the coupling procedures. Let Ne,i denote the number of
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elements advanced with time step Dti. Then the computational cost, excluding that of interface coupling for the moment,
will be proportional to
Tm ¼
XM

i¼1

Ne;i
t0

Dti
; ð54Þ
where t0 is the final time of computation and M is the number of blocks with different time steps used in the computation. On
the other hand, if the smallest time step is used for all the elements, the computational cost will be proportional to
Ts ¼
XM

i¼1

Ne;i
t0

min
16i6M

ðDtiÞ
; ð55Þ
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where min16i6M(Dti) is the smallest time step allowed for the entire computational domain. Then a computational time
reduction factor can be defined as
S ¼ 1� Tm

Ts
: ð56Þ
Clearly, the degree of time reduction that can be achieved by using multirate time integration depends on the relative dis-
tribution of the number of elements among the various time steps. The smaller a percentage of the finest elements, the great-
er a reduction factor in the computational time.

This computational cost reduction factor S for all the numerical examples considered in this section are shown in Table 5.
To account for the additional costs incurred by the coupling procedures at the interfaces of different time steps, all the exam-
ples have been re-run with a single (smallest) time step and an actual computational cost reduction factor is calculated for
each test case,



Table 5
Computational cost saving by variable time step algorithm.

Examples 5.1.1(1A) 5.1.1(1B) 5.1.2 5.2.1 5.2.2

S (%) 24.2 33.3 33.3 33.3 62.1
S* (%) 13.3 32.1 15.7 20.9 54.5

Note. S is the estimated value, and S* is the numerical value.
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S	 ¼ 1� T	m
T	s
; ð57Þ
where T	m and T	s are the actual computational times using multirate and single time step integrations respectively. It is
encouraging to see that for the practical problem of sound scattering by a cylinder, a time reduction over 50% is achieved
with a relatively small cost for the coupling procedures.

6. Conclusions

For complex physical problems, the application of Runge–Kutta discontinuous Galerkin method with a uniform time step
is often constrained by the limitation on the time step afforded by the CFL condition based on the smallest elements. In this
paper, high-order Runge–Kutta scheme with nonuniform time-step sizes is developed which makes the time integration of
semi-discrete systems on nonuniform grid more efficient. The formulation of linear coupling procedure is derived based on
the general explicit p-stage Runge–Kutta formulas, and it can be easily extended to Runge–Kutta schemes used frequently in
CAA. The coupling procedure is only necessary for the elements neighboring the interface of two meshes advancing with dif-
ferent time-step sizes. An approach of optimization for the coupling coefficients is also carried out for low dissipation and
low dispersion errors. Moreover, stability of the coupling procedure has also been examined for LDDRK schemes in combi-
nation with DG method up to sixth order. It was found that the coupling procedures for nonuniform time-step LDDRK-DG
schemes generally preserve the stability property of uniform time step integration. For validation, numerical experiments
have been performed on one- and two-dimensional problems. The numerical results illustrate the stability and accuracy
properties of proposed coupling procedures. Furthermore, applicability of the linear procedure to nonlinear problem is also
demonstrated by solving the Burger’s equation. In addition, the benefits in computational cost saving by the presented algo-
rithm are discussed. Comparing with the computational cost by single time step integration, the developed algorithm results
in obvious benefits in computational efficiency for linear problems, and it also works for the nonlinear one. The overhead due
to the coupling procedures is limited, though that is a slightly higher in solving nonlinear Burger’s equation than in linear
cases. More applications of the algorithm to complex acoustic problems will be investigated in the future work.
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Appendix A. Extension to Runge–Kutta schemes frequently used in CAA

In this Appendix, we will show more details about the extension of the coupling procedures presented in Section 3 to TVD,
2N-storage and minimum storage Runge–Kutta schemes.

A.1. TVD Runge–Kutta schemes

Third-order TVD Runge–Kutta time integration is used frequently for hyperbolic cases for the property of total variation
diminishing and strong stability [18], especially the ones involving shocks. The general form of the scheme is as followed,
Uð0Þ ¼ Un;

UðiÞ ¼ ð1� biÞUð0Þ þ biðUði�1Þ þ DtFðUði�1ÞÞÞ;
i ¼ 1; . . . ;m;

Uðnþ1Þ ¼ Um:

ð58Þ
For third-order TVD Runge–Kutta scheme (m = 3),
b1 ¼ 1; b2 ¼ 1=4; b3 ¼ 2=3:
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To derive the coupling coefficient matrices, we rewrite it into the general m-stage Runge–Kutta form (9), and the correspond-
ing coefficients are,
a21 ¼ 1;
a31 ¼ 1=4; a32 ¼ 1=4;
b1 ¼ 1=6; b2 ¼ 1=6; b3 ¼ 2=3:

ð59Þ
The coefficient matrices for coupling procedures can be obtained by formulae (14)–(20) in Section 3.

A.2. 2N-Storage LDDRK Schemes

For efficient implementation of linear problems, LDDRK schemes are usually rewritten into special forms that require
low-storage, such as 2N-storage schemes, where N is the number of degrees of freedom of the system.

2N-storage implementation is usually executed in the following way
Wi ¼ aiWi�1 þ hFðUi�1Þ;
Ui ¼ Ui�1 þ biWi;

i ¼ 1; . . . ;p;

ð60Þ
where U0 = Un�1 and Un = Up; ai and bi are the coefficients given in [36].
Then matrix C in coupling procedures is of the form
c11 0 0 � � 0

c21 c22 0 � � 0

c31 c32 c33 � � 0

� � � � � �

� � � � � �

cp1 cp2 cp3 � � cpp

26666666666664

37777777777775
; ð61Þ
where
c11 ¼ 1;

c21 ¼ 1þ a2c11; c22 ¼ b1c11;

c31 ¼ 1þ a3c21; c32 ¼ b1c11 þ b2c21 þ a3c22;

c33 ¼ b2c22;

c41 ¼ 1þ a4c31; c42 ¼ b1c11 þ b2c21 þ b3c31 þ a4c32;

c43 ¼ b2c22 þ b3c32 þ a4c33; c44 ¼ b3c33;

� � � � � �
cp1 ¼ 1þ apcp�11; cp2 ¼ b1c11 þ b2c21 þ � � � þ bp�1cp�11 þ apcp�12;

� � �
cpp ¼ bp�1cp�1p�1;

ð62Þ
A.3. Minimum storage Runge–Kutta schemes

Most recently, a new minimum storage Runge–Kutta scheme of fourth-order accuracy with six stages is proposed by M.
Calvo and his co-workers in [4], which only requires 2N-storage with low dissipation and low dispersion errors. This algo-
rithm can be written equivalently as the p-stage Runge–Kutta schemes
F1 ¼ FðUnÞ;

Fi ¼ FðUn þ Dt
Xi�1

j¼1

bjFj þ Dtci�1Fi�1Þ; ði ¼ 2; . . . ;pÞ;

Unþ1 ¼ Un þ Dt
Xp

i¼1

biFi:

ð63Þ
Thus, the coupling matrix C has the same form as in formula (14), but the entries become
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c22 ¼ b1 þ c1;

c32 ¼ b1 þ b2 þ c2; c33 ¼ ðb2 þ c2Þðb1 þ c1Þ;
� � � � � �

cp2 ¼
Pp
i¼1

bi þ cp�1; cp3 ¼
Pp�1

i¼2
bici2 þ cp�1cp�12;

� � �

cpp ¼
Qp�1

i�1
ðbi þ ciÞ;

ð64Þ
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